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When computing a DFT, some applications require the transformation for only a limited set of frequencies. 
FFT algorithms are designed for the calculation of whole spectra. Therefore, if the number of target 
frequencies is relatively small, using such algorithms would not be optimal. In such cases special 
algorithms, the most popular being “Goertzels Algorithm”, are employed. In this abstract I would like to 
suggest the use of another group of algorithms that can perform such partial DFT very efficiently. The 
computational cost per frequency depends on the target frequency itself. For real value input data (the most 
common case) the maximum is N/2 real value additions and N/2 – 2 real value multiplications. All 
computation, except for the final output, can be done in-situ. Additionally the algorithm is reversible, 
supporting the reverse-DFT of an arbitrary set of frequencies to time-domain. 
 
Basic principle: 
 
Similar to a radix-2-FFT, the algorithm requires input data as a set of N = 2X elements. In a first step, data 
is split into a maximum of ld(N) sub-sets the size N/2, N/4, … 2 by successive addition/subtraction. The 
mechanism is identical to the first steps of a decimation-in-frequency-FFT, before applying the twiddle 
factors. The sub-sets represent the frequencies 1, 2, 4, 8, … N/2 as well as their odd harmonics (e.g. 1, 3, 5, 
… / 2, 6, 10, … / 4, 12, 20, …). The algorithm should be programmed dynamically, so that only sub-sets 
containing target frequencies are calculated. Following an example: 
 
If the input data consists of 24 = 16 real elements, the frequency-domain contains 8 elements, distributed in 
the sub-sets: 
 
Set 1: 1, 3, 5, 7 
Set 2: 2, 6 
Set 3: 4 
Set 4: 8 
 
If only the frequencies 1, 3, 6, 7 are of interest, calculation of set 3 and set 4 is not needed. For further 
illustration the below chart describes the splitting in detail. 
 
 

Input First split Second split Third split
X0 X0-X8
X1 X1-X9
X2 X2-X10
X3 X3-X11
X4 X4-X12
X5 X5-X13
X6 X6-X14
X7 X7-X15
X8 X0+X8 (X0+X8)-(X4+X12)
X9 X1+X9 (X1+X9)-(X5+X13)
X10 X2+X10 (X2+X10)-(X6+X14)
X11 X3+X11 (X3+X11)-(X7+X15)
X12 X4+X12 (X0+X8)+(X4+X12) ((X0+X8)+(X4+X12))-((X2+X10)+(X6+X14))
X13 X5+X13 (X1+X9)+(X5+X13) ((X1+X9)+(X5+X13))-((X3+X11)+(X7+X15))
X14 X6+X14 (X2+X10)+(X6+X14) ((X0+X8)+(X4+X12))+((X2+X10)+(X6+X14))
X15 X7+X15 (X3+X11)+(X7+X15) ((X1+X9)+(X5+X13))+((X3+X11)+(X7+X15))

Frequencies 1, 3, 5, 7

Frequencies 2, 6

Frequency 4

Frequency 8 (0)
 

 
Chart 1: Splitting of time-domain data by frequency



As a second step, the splitting is followed by a DFT. In contrast to other methods, the algorithm is set up to 
only calculate DFT of the base frequencies of the sub-sets. To keep the above example, “base frequencies” 
would be 1 and 2, since sub-set 3 and 4 are not needed. In order to get the DFT of the harmonics 3, 6, 7, an 
additional frequency-shifting is required prior to the actual DFT. Therefore the exact sequence would have 
to be like that: 
 
1.) Data input 
 
2.) Calculation of sub-sets (e.g. Set 1 and Set 2) 
 
3.) DFT of required "base frequencies" (e.g. 1) 
 
4.) Frequency-shifting of first sub-set to do DFT of required harmonics 
     (e.g. shift 3 to 1 and DFT 3, shift 7 to 1 and DFT 7) 
 
5.) Frequency-shifting of second sub-set to do DFT of required harmonics 
     (e.g. shift 6 to 2 and DFT 6) 
 
Frequency-shifting in this case simply means expanding the step width between to consecutive elements of 
the time-domain data of a sub-set by a certain (odd) factor. Because of the limited resolution in time, all 
frequencies shifted out of the base band are mirrored back (aliasing effect). If started at the first data 
element of the sub-set, the shifting affects the frequency but not the phase of the signal. Here some 
examples: 
 
 

Input
First split

(frequencies 1, 3, 5, 7)
Frequency-shifting by 5

(freq. 3->1, 7->3, 1->5, 5->7)
X0 Y0 = X0-X8 Y0
X1 Y1 = X1-X9 Y5
X2 Y2 = X2-X10 -Y2
X3 Y3 = X3-X11 -Y7
X4 Y4 = X4-X12 Y4
X5 Y5 = X5-X13 -Y1
X6 Y6 = X6-X14 -Y6
X7 Y7 = X7-X15 Y3
X8
X9
X10
X11
X12
X13
X14
X15  

 
Chart 2: Frequency-shifting by a factor of 5 
 
In chart 2 the frequencies of the sub-set are shifted by 5, with frequency 3 taking the place of 1. Hence, the 
same DFT can be used for both frequencies (DFT to 1 -> shift with 5x -> DFT to 3). In this way all 
frequencies of interest can be sequentially “pushed” to 1 and transformed. The gain of this approach lies in 
the structure of the DFT, which becomes static (the same DFT-sequence with the same parameter is being 
used multiple times). That is very beneficial when designing hardware-based DFT but also gives significant 
savings in computation time at software solutions. 
 
Instead of only shifting the target frequencies, it is also possible to progressively rotate the whole sub-set 
by continuously shifting with the same factor (e.g. 3 or 5). After N/2 – 1 such steps, all frequencies have 
“passed” 1 (N in this case being the length of the sub-set). Chart 3 illustrates the idea. This approach might 
be favourable for a hardware-based shifter, because the complexity of the circuit is being reduced even 
further. 



Input
First split

(frequencies 1, 3, 5, 7)
Frequency-shifting by 3

(freq. 5->1, 1->3, 7->5, 3->7)
Frequency-shifting by 3

(freq. 7->1, 5->3, 3->5, 1->7)
Frequency-shifting by 3

(freq. 3->1, 7->3, 1->5, 5->7)
X0 Y0 = X0-X8 Y0 Y0 Y0
X1 Y1 = X1-X9 Y3 -Y1 -Y3
X2 Y2 = X2-X10 Y6 Y2 Y6
X3 Y3 = X3-X11 -Y1 -Y3 Y1
X4 Y4 = X4-X12 -Y4 Y4 -Y4
X5 Y5 = X5-X13 -Y7 -Y5 Y7
X6 Y6 = X6-X14 Y2 Y6 Y2
X7 Y7 = X7-X15 Y5 -Y7 -Y5
X8
X9
X10
X11
X12
X13
X14
X15  

 
Chart 3: Rotating frequencies by continuously shifting with 3x 
 
Depending on the available resources and the preferred design (hardware / software), shifting can be done 
in many different ways and at different points within the algorithm. Following some possible scenarios: 
 
 

1.) Shifting of the actual content of the memory 
 
This can be done in-situ (see chart 4). Due to the odd frequency ratio, the structure of the algorithm 
is relatively complex. In addition many read / write operations are required. Therefore this 
approach seems most suitable for a hardware-based shifter, especially if the shifting factor is 
constant (as in chart 3). In this case only one array of memory the size of the sub-set is required. 
Output and input of the memory are connected in a way representing the desired shifting factor. 
With each load cycle the content is then shifted by that factor and ready for DFT. 

 
 

2.) Shifting of the memory pointer 
 
If memory is accessed indirectly via a pointer, shifting that pointer would be much faster and 
efficient that shifting the content of memory itself. 

 
 

3.) Shifting the DFT pointer 
 
Rather than manipulating the content of the memory, another approach is to change the pointer 
defining the access of the DFT algorithm to that data. To give an example, instead of computing 
X0, X1, X2, … with a 16-value-DFT for frequency 1, data can be loaded into the same DFT with a 
shifting factor of 5 (X0, X5, X10, … ) to calculate frequency 3. Since the allocation of data 
between the memory and the DFT sequence has to be done anyway, this approach would require 
only minimal extra resources and be optimal for a software-based implementation. Later chart 5 
provides an example. 



Input
First split

(frequencies 1, 3, 5, 7)
Shifting by 3

(in-situ)
X0 X0-X8 X0-X8
X1 X1-X9 X3-X11
X2 X2-X10 X6-X14
X3 X3-X11 -X1+X9
X4 X4-X12 -X4+X12
X5 X5-X13 -X7+X15
X6 X6-X14 X2-X10
X7 X7-X15 X5-X13
X8
X9
X10
X11
X12
X13
X14
X15  

 
Chart 4: Principle of in-situ shifting 
 
 
Additional optimisations: 
 
Since the algorithm is basically just a disentangled radix-based FFT, even more computation time can and 
should be saved by exploiting the symmetries between the various frequencies of each sub-set. It is those 
symmetries that allow hierarchical computation of a DFT and give FFT its speed. Looking at the various 
options it becomes obvious, that only some symmetries can be successfully used when computing arbitrary 
frequencies. For most the computational cost of controlling the algorithm (decision points, …) would far 
exceed the benefit of saving some calculations. With respect to each sub-set, efficient implementation is 
possible for the symmetries at (fa+fb)/2, in particular fmax/2. The practical implication is that data points at 
N/4, N/2, 3N/4 (N being the length of the sub-set) have to be calculated only once (do not change when 
sub-set is frequency-shifted) and that frequencies symmetric to fmax/2 (e.g.1 and 7 or 3 and 5 at our 
example) give the same results in multiplication and hence need to be calculated only once. 



Examples: 
 
 

Step 1 2 3 4

Comment 24 elements

Element
Real value 

input

First split
(freq. 1,3,5,7
and 2,4,6,8)

Second split
(freq. 2,6
and 4,8)

Third split
(freq. 4 and 8)

Real Imag. Real Imag. Real Imag. Real Imag.

0 X0 Y10=X0-X8 Y70=Y10

1 X1 Y11=X1-X9 Y71=Y11-Y17

2 X2 Y12=X2-X10 Y72=Y12-Y16

3 X3 Y13=X3-X11 Y73=Y13-Y15

4 X4 Y14=X4-X12 Y74=Y14

5 X5 Y15=X5-X13 Y75=Y13+Y15

6 X6 Y16=X6-X14 Y76=Y12+Y16

7 X7 Y17=X7-X15 Y77=Y11+Y17

8 X8 Y20=X0+X8 Y30=Y20-Y24 Y80=Y30

9 X9 Y21=X1+X9 Y31=Y21-Y25 Y81=Y31-Y33

10 X10 Y22=X2+X10 Y32=Y22-Y26 Y82=Y32

11 X11 Y23=X3+X11 Y33=Y23-Y27 Y83=Y31+Y33

12 X12 Y24=X4+X12 Y40=Y20+Y24 Y50=Y40-Y42 Y90=Y50

13 X13 Y25=X5+X13 Y41=Y21+Y25 Y51=Y41-Y43 Y91=Y51

14 X14 Y26=X6+X14 Y42=Y22+Y26 Y60=Y40+Y42 Y100=Y60-Y61

15 X15 Y27=X7+X15 Y43=Y23+Y27 Y61=Y41+Y43

8

Separation
Real / Imag.
for freq. 8 (0)

Check list of target frequencies to decide 
which sub-set has to be calculated

Separation
Real / Imag.
for freq. 2, 6

Separation
Real / Imag.

for freq. 1, 3, 5, 7

Check list of target frequencies to decide which separation has to be calculated

5 6 7

Separation
Real / Imag.
for freq. 4

 
 
                           In-situ calculation ends at step 8. 
 
 
 

Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.
Phase 
angle

sin x

P10=Y70 P30=Y70  =0*pi/8 Z11

P11=Y71*Z14 P31=-Y73*Z14  =1*pi/8 Z12

P12=Y72*Z13 P32=-P12  =2*pi/8 Z13

P13=Y73*Z12 P33=Y71*Z12  =3*pi/8 Z14

P20=Y74 P40=-Y74

P21=Y75*Z14 P41=Y77*Z14

P22=Y76*Z13 P42=P22

P23=Y77*Z12 P43=-Y75*Z12

P50=Y80

P51=Y81*Z13

P60=Y82

P61=Y83*Z13

P70=Y90

P80=Y91

P90=Y100

f1
 =P10+P11

+P12+P13

 =P20+P21

+P22+P23
f3

 =P30+P31

+P32+P33

 =P40+P41

+P42+P43
f2  =P50+P51  =P60+P61 f4  =P70  =P80 f8  =P90

f7
 =P10-P11

+P12-P13

 =-P20+P21

-P22+P23
f5

 =P30-P31

+P32-P33

 =-P20+P21

-P22+P23
f6  =P50-P51  =-P60+P61

N/2 - 2 = 6 real mult. N/2 - 4 = 4 real mult. N/4 - 2 = 2 real mult. N/8 - 2 = 0 real 

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

Multiplication
with f = 4
(freq. 4)

Multiplication
with f = 8
(freq. 8)

Sin-tableElement
Multiplication

with f = 1
(freq. 1, 7)

Mult. with f = 1,
input shifted by 5

(freq. 3, 5)

Multiplication
with f = 2

(freq. 2, 6)

12 13

Comment Check list of target frequencies to decide which frequency has to be calculated

Step 9 10 11

 
 
Chart 5: Real value DFT for N=16, shifting the pointer of the DFT and exploiting some symmetries in data 
(Gray steps do not need to be calculated) 



Step 1 2 3 4

Comment 24 elements

Element
Real value 

input

First split
(freq. 1,3,5,7
and 2,4,6,8)

Second split
(freq. 2,6
and 4,8)

Third split
(freq. 4 and 8)

Real Imag. Real Imag. Real Imag. Real Imag.

0 -0,65 -1,19 -1,19
1 0,95 1,66 2,30
2 -0,32 -0,68 -1,07
3 0,51 1,12 1,32
4 0,64 0,20 0,20
5 -0,27 -0,20 0,92
6 0,31 0,39 -0,29
7 0,27 -0,64 1,02
8 0,54 -0,11 -1,19 -1,19
9 -0,71 0,24 0,58 1,86

10 0,36 0,04 -0,19 -0,19
11 -0,61 -0,10 -1,28 -0,70
12 0,44 1,08 0,97 0,70 0,70
13 -0,07 -0,34 -0,10 -1,18 -1,18
14 -0,08 0,23 0,27 1,24 0,26
15 0,91 1,18 1,08 0,98

5 6
Check list of target frequencies to decide 

which sub-set has to be calculated

Separation
Real / Imag.
for freq. 2, 6

Separation
Real / Imag.

for freq. 1, 3, 5, 7

Check list of target frequencies to decide which separation has 
to be calculated

7

Separation
Real / Imag.

for freq. 4

8

Separation
Real / Imag.

for freq. 8

 
 
                            In-situ calculation ends at step 8. 
 
 
 

Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.
Phase 
angle

sin x

-1,19 -1,19 0,00 0,00
2,12 -1,22 0,39 0,38
-0,76 0,76 0,79 0,71
0,51 0,88 1,18 0,92

0,20 -0,20
0,85 0,94
-0,21 -0,21
0,39 -0,35

-1,19
1,32

-0,19
-0,49

0,70
-1,18

0,26

f1 0,68 1,24 f3 -0,77 0,19 f2 0,13 -0,68 f4 0,70 -1,18 f8 0,26

f7 -4,58 1,25 f5 -0,09 1,00 f6 -2,51 -0,30

8
9

14
15

10
11
12
13

4
5
6
7

N/2 - 2 = 6 
real mult.

Comment

Element

0
1
2
3

Sin-table
Multiplication

with f = 2
(freq. 2, 6)

11109Step

N/8 - 2 = 0 
real mult.

Multiplication
with f = 8
(freq. 8)

13
Check list of target frequencies to decide which frequency has to be calculated

Multiplication
with f = 4
(freq. 4)

N/4 - 2 = 2 
real mult.

12

Mult. with f = 1,
input shifted by 5

(freq. 3, 5)

N/2 - 4 = 4 real 
mult.

Multiplication
with f = 1

(freq. 1, 7)

 
 
Chart 6: Algorithm from Chart 5 with noise signal as input 


